Abstract

BackgroundAlthough various surgical methods are used to treat lumbosacral tuberculosis, no unified surgical approach exists. Thus, exploring an optimal operation method has substantial clinical importance. Evaluate the initial stability of a new surgical method, a one-stage anterior debridement and cage implantation combined with anterior-lateral fixation by a dual screw-rod construct, in the treatment of lumbosacral tuberculosis and provide biomechanical support for its further promotion in clinical applications.MethodsFifteen fresh human lumbosacral spine specimens without fractures, deformities or osteoporosis were randomly divided into intact (I), anterior fixation (AF) and posterior fixation (PF) groups. All AF and PF group specimens had subtotal resections of the L5 vertebra and adjacent discs, while the I group specimens were kept intact. Then, titanium cages were implanted in the surgical site and a dual screw-rod construct was fixed anterior-laterally in the AF group, while the PF group specimens were fixed posteriorly with only the dual screw-rod construct. Mechanical tests were conducted for initial stability evaluations.ResultsThe load at the maximum displacement (5 mm) or rotation angle (5 °) was less for the I group specimens than for the AF and PF group specimens in all directions (P < 0.05). The load at the maximum displacement (5 mm) was greater for the AF group specimens than for the PF group specimens in flexion, lateral bending and axial compression (P < 0.05) and lower than in the PF group specimens in extension (P < 0.05). In torsion, there was no difference between the loads in the AF and PF groups at the maximum rotation angle (5 °) (P > 0.05).Conclusions: The proposed surgical approach can provide better immediate stability than anterior debridement with posterior dual screw-rod fixation in the treatment of lumbosacral tuberculosis in flexion, lateral bending and axial compression.

Highlights

  • Various surgical methods are used to treat lumbosacral tuberculosis, no unified surgical approach exists

  • To remedy the above deficiencies, we developed a new surgical procedure, one-stage anterior debridement and cage implantation combined with anterior-lateral fixation by a dual screw-rod construct underneath the iliac vessel, and obtained satisfactory results according to follow-up investigations [13, 14]

  • The load required to reach the maximum displacement for the specimens in the anterior fixation (AF) group was significantly greater than that for the specimens in the posterior fixation (PF) group in the flexion, left and right lateral bending directions (P < 0.05), while in the extension direction, the load required for the specimens in the AF group was significantly smaller than that for the specimens in the PF group (P < 0.05)

Read more

Summary

Introduction

Various surgical methods are used to treat lumbosacral tuberculosis, no unified surgical approach exists. Evaluate the initial stability of a new surgical method, a one-stage anterior debridement and cage implantation combined with anterior-lateral fixation by a dual screw-rod construct, in the treatment of lumbosacral tuberculosis and provide biomechanical support for its further promotion in clinical applications. Due to the complexity of the anatomical structure of the lumbosacral spine and the high requirement of fixation stability, both anterior and posterior approaches have been applied for the treatment of lumbosacral spinal tuberculosis [4,5,6]. To remedy the above deficiencies, we developed a new surgical procedure, one-stage anterior debridement and cage implantation combined with anterior-lateral fixation by a dual screw-rod construct underneath the iliac vessel, and obtained satisfactory results according to follow-up investigations [13, 14]. The reestablished stability of the lumbosacral spine in flexion and extension, lateral flexion, torsion and axial compression was tested by comparing with the traditional anterior lesion removal combined with posterior double screw-rods fixation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.