Abstract

The effects of initial soil moisture on colloid-associated transport are still poorly understood given the well-recognized significance of colloid-facilitated transport of strongly-sorbing contaminants. In this study, Cd leaching was sequentially conducted in an intact soil column under three initial moisture conditions (near saturation, field capacity and dryness). Soil colloids were always the dominant carriers for Cd. However, upon the lowering of initial soil moisture, increased transport of colloids (96.2→101.0→168.2 mg) was observed, surprisingly, along with decreased transport of colloid-associated Cd (C-Cd) (23.9→10.7→8.2 µg) and enrichment factor (248.4→105.9→48.8 mg/kg) of Cd on colloids, resulting from pH reduction which increased Cd desorption and colloid size increase and/or ζ-potential decrease that showed lower affinity for Cd. Correlation, redundancy analysis and structural equation modelling revealed the dominantly positive role of colloids, EC plus cations (Ca2+ and Mg2+) in the release of C-Cd and dissolved Cd (D-Cd), respectively, under initial moistures of near saturation and field capacity. Under initially dry conditions, soil water potential showed dominantly negative effects on the transport of both C-Cd and D-Cd. These findings highlighted the critical role of initial moisture conditions in modulating colloid-facilitated Cd mobilisation, providing insights into the environmental risk assessment of heavy metals in other leaching scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call