Abstract
We present reaction probabilities, branching ratios and vibrational product quantum state distributions for the reaction O (1D)+ HCl → OH+Cl (OCl+H) , Boltzmann averaged over initial rotational quantum states at a temperature of 300 K and also for the deuterium isotopic variant. The quantum scattering dynamics are performed using the potential energy surfaces for all three contributing electronic states. Comparisons are presented with results computed using only the ground electronic state potential energy surface, with results computed using only the j = 0 initial rotational state and also with results obtained using an equal weighting for the lowest 10 rotational states. Inclusion of the higher initial rotational states significantly changes the form of the reaction probability as a function of collision energy, reducing the threshold for reaction on the 1A" and 2A' excited electronic states. We found that the combined inclusion of higher initial rotational states and all three contributing electronic states is crucial for obtaining a branching ratio that is within the range and trend given by experiment from our J = 0 calculations. Isotopic effects range from tunnelling effects for the hydrogen variant and enhancement of reactivity for the production of OD on the excited electronic states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Theoretical and Computational Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.