Abstract

Recent radio occultation measurements using Global Positioning System satellite transmitters and an orbiting receiver have provided a globally distributed set of high-resolution atmospheric profiles, suggesting that the technique may make a significant contribution to global change and weather prediction programs. Biases in occultation temperatures relative to radiosonde and model data are about 1 kelvin or less in the tropics and are generally less than 0.5 kelvin at higher latitudes. Data quality is sufficient to quantify significant model errors in remote regions. Temperature profiles also reveal either an equatorial Rossby-gravity or an inertio-gravity wave. Such waves provide a fundamental source of momentum for the stratospheric circulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.