Abstract

The global navigation satellite system reflectometry (GNSS-R) technique has been proven to be a powerful tool for retrieving geophysical parameters of ocean and land/hydrology processes. The ultimate goal for such GNSS-R applications is to achieve large-scale, all-weather, and full-time mapping using spaceborne platforms. In order to ensure both GNSS-R receiver and algorithm meet the requirements of spaceborne observations, airborne experimental campaigns need to be first carried out for early testing and validation purposes. This paper presents a first comprehensive overview of China’s airborne GNSS-R campaign conducted on May 30, 2014. There were two objectives for this campaign: (1) to examine the capability of the GNSS-R receiver developed by the National Space Science Center, Chinese Academy of Sciences, for airborne observations and (2) to study algorithms for soil moisture and altimetry retrievals. In this paper, initial results of soil moisture retrievals are presented. The left-hand circularly polarized-predominant satellite information was successfully used to retrieval soil moisture over the cropland. The right-hand circularly polarized components of the reflected signals were also received and examined. The GPS-derived soil moisture results, on the one hand, correctly represented the spatial variations of the soil moisture along the tracking of the flight; on the other hand, the results underestimated the ground-truth. Errors from the retrieval model and from the positioning and effects from the vegetation layer and from the atmospheric water vapor were the primary causes of the uncertainties in soil moisture retrievals using the airborne GNSS-R data. This airborne experimental campaign firstly investigate that China has the capability to perform airborne GNSS-R observation using the self-developed receiver, although the receiver developed by the NSSC needs to be further examined for its capability for spaceborne observation. The early findings of this study will provide illustrations for planned future airborne campaigns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.