Abstract

A technique is developed for finding the time dependent operating probabilities used by reliability systems designers for provisioning a system with N + k identical units, k of which are called spares and N called operating units, and s repair facilities. System failure occurs when less than N units are operational. Units fail with exponential interfailure times and are repaired with exponential service time. Idle spares fail due to deterioration at a rate possibly different from that of the operating units. Graphs are presented which show the minimum numbers of spares needed to achieve system reliabilities of 0.90 and 0.99 as a function of time. The technique is applicable for finding, numerically, the first passage time distribution for any system modeled by birth and death processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.