Abstract

The systemic and renal distribution of 18F-FDS were determined by dynamic 35-min PET imaging (15 frames × 8 s, 26 frames × 30 s, 20 frames × 60 s) with a dedicated small-animal PET system and postmortem tissue counting in healthy rats. Distribution of coinjected 99mTc-diethylenetriaminepentaacetic acid (DTPA) was also estimated as a reference. Plasma binding and in vivo stability of 18F-FDS were determined. In vivo PET imaging visualized rapid excretion of the administrated 18F-FDS from both kidneys, with minimal tracer accumulation in other organs. Initial cortical tracer uptake followed by visualization of the collecting system could be observed with high contrast. Split-function renography curves were successfully obtained in healthy rats (the time of maximal concentration [Tmax] right [R] = 2.8 ± 1.2 min, Tmax left [L] = 2.9 ± 1.5 min, the time of half maximal concentration [T1/2max] R = 8.8 ± 3.7 min, T1/2max L = 11.1 ± 4.9 min). Postmortem tissue counting of 18F-FDS confirmed the high kidney extraction (kidney activities at 10, 30, and 60 min after tracer injection [percentage injected dose per gram]: 1.8 ± 0.7, 1.2 ± 0.1, and 0.5 ± 0.2, respectively) in a degree comparable to 99mTc-DTPA (2.5 ± 1.0, 1.5 ± 0.2, and 0.8 ± 0.3, respectively). Plasma protein binding of 18F-FDS was low (<0.1%), and metabolic transformation was not detected in serum and urine. In rat experiments, 18F-FDS demonstrated high kidney extraction and excretion, low plasma protein binding, and high metabolic stability as preferable properties for renal imaging. These preliminary results warrant further confirmatory studies in large animal models and clinical studies as a novel functional renal imaging agent, given the advantages of PET technology and broad tracer availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call