Abstract

Variable-stiffness shells are curved composite structures in which the fibre-reinforcement follow curvilinear paths in space. Having a wider design space than traditional composite shells, they have the potential to improve a wide variety of weight-critical structures.In this paper, a new method for computing the initial post-buckling response of variable-stiffness cylindrical panels is presented, based on the differential quadrature method. Integro-differential governing and boundary equations governing the problem, derived with Koiter׳s theory (Koiter, 1945), are solved using a mixed generalised differential quadrature (GDQ) and integral quadrature (GIQ) approach. The post-buckling behaviour is determined on the basis of a quadratic expansion of the displacement fields. Orthogonality of the mode-shapes in the expansion series is ensured by a novel use of the Moore–Penrose generalised matrix inverse for solving the GDQ–GIQ equations. The new formulation is validated against benchmark analytical post-buckling results for constant stiffness plates and shells, and compared with non-linear finite-element (FE) analysis for variable-stiffness shells. Stability estimates are found to be in good agreement with incremental FE results in the vicinity of the buckling load, requiring only a fraction of the number of variables used by the current method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.