Abstract

Intense, ultrashort, and high-repetition-rate X-ray pulses, combined with a femtosecond optical laser, allow pump-probe experiments with fast data acquisition and femtosecond time resolution. However, the relative timing of the X-ray pulses and the optical laser pulses can be controlled only to a level of the intrinsic error of the instrument which, without characterization, limits the time resolution of experiments. This limitation inevitably calls for a precise determination of the relative arrival time, which can be used after measurement for sorting and tagging the experimental data to a much finer resolution than it can be controlled to. The observed root-mean-square timing jitter between the X-ray and the optical laser at the SPB/SFX instrument at European XFEL was 308fs. This first measurement of timing jitter at the European XFEL provides an important step in realizing ultrafast experiments at this novel X-ray source. A method for determining the change in the complex refractive index of samples is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.