Abstract

AbstractThe NASA Global‐scale Observations of the Limb and Disk (GOLD) mission has flown an ultraviolet‐imaging spectrograph on SES‐14, a communications satellite in geostationary orbit at 47.5°W longitude. That instrument observes the Earth's far ultraviolet (FUV) airglow at ~134–162 nm using two identical channels. The observations performed include limb scans, stellar occultations, and images of the sunlit and nightside disk from 6:10 to 00:40 universal time each day. Initial analyses reveal interesting and unexpected results as well as the potential for further studies of the Earth's thermosphere‐ionosphere system and its responses to solar‐geomagnetic forcing and atmospheric dynamics. Thermospheric composition ratios for major constituents, O and N2, temperatures near 160 km, and exospheric temperatures are retrieved from the daytime observations. Molecular oxygen (O2) densities are measured using stellar occultations. At night, emission from radiative recombination in the ionosphericFregion is used to quantify ionospheric density variations in the equatorial ionization anomaly (EIA). Regions of depletedFregion electron density are frequently evident, even during the current solar minimum. These depletions are caused by the “plasma fountain effect” and are associated with the instabilities, scintillations, or “spreadF” seen in other types of observations, and GOLD makes unique observations for their study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call