Abstract
Efficient solar thermal collectors incorporate thermosiphon effect to rid the costs associated with force flow systems, yet they lack the functions of solar photocatalytic collectors for water cleaning. The combination of hot and clean water from one collector is demonstrated in the present study by utilizing two chambers under Mirotherm® solar selective absorber. Top glazing has a transmittance of 71%. One chamber was closed and transports captured heat to the mixture chamber, which is open to a cold reservoir in a loop method. MB dye in water and AEROXIDE TiO2 P90 were utilized as the reagents. It has been observed that 1.2 ppm of MB dye can be cleaned using 127.4 mg*L-1 suspended UV-activated AEROXIDE TiO2 P90 that exhibits no sedimentation in the collector with thermosiphon flow. Thermal analysis was performed using ten thermocouples within the collector and non-contact temperature sensors above. The analysis of water heating thermal collector was studied for two modes; one with a controlled cold inlet and other with rising temperature inlet. We recommend that a controlled inlet temperature of 21.5 °C be utilized to acquire 40.1 °C increase in temperature, at which point the thermal efficiency of the collector is 67%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.