Abstract
To study the fragmentation and gravitational collapse of dense cores in infrared dark clouds (IRDCs), we have obtained submillimeter continuum and spectral line data as well as multiple inversion transitions of NH3 and H2O maser data of four massive clumps in an IRDC G28.53-0.25. Combining single dish and interferometer NH3 data, we derive the rotation temperature of G28.53. We identity 12 dense cores at 0.1 pc scale based on submillimeter continuum, and obtain their physical properties using NH3 and continuum data. By comparing the Jeans masses of cores with the core masses, we find that turbulent pressure is important in supporting the gas when 1 pc scale clumps fragment into 0.1 pc scale cores. All cores have a virial parameter smaller than 1 assuming a inverse squared radial density profile, suggesting they are gravitationally bound, and the three most promising star forming cores have a virial parameter smaller than 1 even taking magnetic field into account. We also associate the cores with star formation activities revealed by outflows, masers, or infrared sources. Unlike what previous studies suggested, MM1 turns out to harbor a few star forming cores and is likely a progenitor of high-mass star cluster. MM5 is intermediate while MM7/8 are quiescent in terms of star formation, but they also harbor gravitationally bound dense cores and have the potential of forming stars as in MM1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.