Abstract

The antenna subtraction method has achieved remarkable success in various processes relevant to the Large Hadron Collider. In Reference [1], an algorithm was proposed for constructing real-radiation antenna functions for electron-positron annihilation, directly from specified unresolved limits, accommodating any number of real emissions. Here, we extend this algorithm to build antennae involving partons in the initial state, specifically the initial-final and initial-initial antennae. Using this extended algorithm, we explicitly construct all NLO QCD antenna functions and compare them with previously extracted antenna functions derived from matrix elements. Additionally, we rigorously match the integration of the antenna functions over the initial-final and initial-initial unresolved phase space with the previous approach, providing an independent validation of our results. The improved antenna functions are more compact and reduced in number, making them more readily applicable for higher-order calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call