Abstract

Accelerators for heavy-ion inertial fusion energy (HIF) have an economic incentive to fit beam tubes tightly to beams, putting them at risk from electron clouds produced by emission of electrons and gas from walls. Theory and PIC simulations suggest that the electrons will be radially trapped in the /spl ges/1 kV ion-beam potential. We are beginning studies on the High-Current Experiment (HCX) with unique capabilities to characterize electron production and trapping, the effects on ion beams, and mitigation techniques. We are measuring the flux of electrons and gas evolved from a target, whose angle to the beam can be varied between 78/spl deg/ and 88/spl deg/ from normal incidence. Quadrupole magnets are operating with a variety of internal charged particle diagnostics to measure the beam halo loss, net charge, electron ionization rate, and gas density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.