Abstract

Due to increased whole-tree harvesting in Swedish forestry, concern has been raised that a depletion of nutrients in forest soil will arise. The Swedish Forest Agency recommends compensation fertilization with wood ash to ensure that unwanted effects are avoided in the nutrient balance of the forest soil and in the quality of surface water. In this investigation, the chemistry of two first-order streams, of which one was subjected to a catchment scale treatment with 3 tonnes of self-hardened wood ash/ha in the fall of 2004, was monitored during 2003–2006. Large seasonal variations in stream water chemistry made changes due to ash application difficult to detect, but evaluating the ash treatment effects through comparison of the stream water of the treated catchment with the reference was possible via statistical tools such as randomized intervention analysis in combination with cumulative sum charts. The wood ash application did not yield any significant effect on the pH in the stream water and hence did not affect the bicarbonate system. However, dissolved organic carbon increased, a previously unreported effect of WAA, bringing about an increase of organic anions in the stream water. The wood ash application also induced significant increases for Ca, Mg, K, Si, Cl and malonate, of which K was most prominent. Although significant, the changes induced by the wood ash application were all small compared to the seasonal variations. As a tool to counteract acidification of surface waters, WAA seems to have limited initial effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call