Abstract
Effects of injection pressure and fuel thermodynamic properties on near nozzle spay patterns at the start of the fuel spray were investigated with an ultra-high speed imaging technique. Ethanol (ETH), winter fuel (WIN), diesel (REF), and Rape Methyl Ester (RME) were injected from a single-hole injector at 60MPa, 90MPa and 120MPa. A long distance microscope coupled with an ultra-high speed camera (Shimadzu HPV-2) was also used. The spray structure at the start of the spray included a mushroom and a trail zone. The initial mushroom was generated by the residual fuel in the SAC volume which was responsible for the variation between the different injections. The ultra-high speed imaging revealed that delays from the start of triggering (SOT) to the emergence of liquid from the nozzle were not the same under various injection pressures for different fuels, because of their thermodynamic properties. Mushroom lengths and viscosity were closely related. RME had the longest mushroom zone while ETH had the shortest mushroom zone with no stem. At higher pressures, no ligaments were observed and the leading mushrooms were integrated into the trail zone, which can be referred to as the fully atomized region. At fully atomized regions, the increase of injection pressure did not affect spray patterns. Development of the micro cone angle during this quasi-steady stage experienced a sudden increase followed by a relatively steady stage. Injection pressure and fuel viscosity were shown to have effect on the development of spray cone angle at the opening stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.