Abstract

The influence of CO2 laser irradiation on the dissolution behavior of human dental enamel has been investigated. Human enamel was irradiated by a continuous-wave CO2 laser at 10.6 microns and initial dissolution rates (IDRs) were measured in 0.1 mol/L acetate buffer, pH = 4.5, both with and without calcium and/or phosphate common ion, by means of a rotating disk assembly. The effects of (1-hydroxyethylidene) bisphosphonic acid (EHDP), fluoride (F), and dodecylamine HCl (DAC) at various levels upon the IDR were also determined. All of the findings were consistent with the hypothesis that CO2 laser irradiation converts dental enamel to hydroxyapatite (HAP) possessing site #2 character (Yamamoto et al., 1986). The dissolution driving force function, KHAP = aCa10aPO4(6)aOH2, was found to have a value of 10(-129.9) after being lased, as compared with 10(-121.4) before being lased. The IDR values for EHDP (3 mmol/L) and DAC (3 mmol/L) were essentially zero as expected for site #2 HAP. For solution F, the deduced dissolution driving force function, KFAP = aCa10aPO4(6)aF2 was 10(-128.6) after being lased as compared with 10(-116.3) before being lased. These results all support the hypotheses (1) that laser irradiation may convert the surface of human dental enamel to an apatite of significantly lower effective solubility (i.e., site #2 HAP) than that of unlased enamel; and (2) that there is significant synergism between laser treatment and these chemical dissolution rate inhibitors (again consistent with site #2 HAP). Simple model calculations indicate that, in both the presence and absence of fluoride, these laser-induced changes in the driving force for dissolution should dramatically lessen the susceptibility of enamel to the types of acid challenge that might be encountered in the mouth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call