Abstract
Aqueous dissolution tests were performed for a Japanese type of simulated high-level waste (HLW) glass P0798 by using a newly developed test method of micro-channel flow-through (MCFT) method, and the initial dissolution rate of glass matrix, r 0, was measured as a function of solution pH (3–11) and temperature (25–90°C) precisely and consistently for systematic evaluation of the dissolution kinetics. The MCFT method using a micro-channel reactor with a coupon shaped glass specimen has the following features to provide precise and consistent data on the glass dissolution rate: (1) any controlled constant solution condition can be provided over the test duration; (2) the glass surface area actually reacting with solution can be determined accurately; and (3) direct and totally quantitative analyses of the reacted glass surface can be performed for confirming consistency of the test results. The present test results indicated that the r 0 shows a “V-shaped” pH dependence with a minimum at around pH 6 at 25°C, but it changes to a “U-shaped” one with a flat bottom at neutral pH at elevated temperatures of up to 90°C. The present results also indicated that the r 0 increases with temperature according to an Arrhenius law at any pH, and the apparent activation energy evaluated from Arrhenius relation increases with pH from 54 kJ/mol at pH 3 to 76 kJ/mol at pH 10, which suggests that the dissolution mechanism changes depending on pH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.