Abstract
This study reports an experimental and numerical investigation of droplet combustion of a miscible n-heptane/iso-octane mixture at a fixed mixture fraction (equi-volume) for initial diameters (Do) in the range of 0.8 mm ≤ Do < 5 mm. This range encompasses burning transitions from hot flame (HF) combustion to the cool flame (CF) regime where radiative extinction can occur. The simulations assume spherically symmetric gas transport which was promoted in the experiments by a low gravity environment and relatively stationary droplets. Unsupported or free-floating droplets were deployed and ignited in a sealed chamber on the International Space Station to provide a low gravity condition and to accommodate the anticipated long droplet burning times (tens of seconds) for the droplet sizes investigated. The simulations incorporated multistep combustion kinetics with an embedded low temperature kinetic mechanism, non-luminous flame radiation, a model for phase equilibrium of the mixture, variable properties, unsteady gas and liquid transport, and species diffusion in the liquid. The results showed no evidence of preferential vaporization because of the close boiling points of n-heptane and iso-octane. For Do < 3 mm, the mixture droplets remained in the initial HF burning regime. For larger Do, a transition to extinction-like behavior occurred. Measured flame radiances confirmed the importance of radiation as a controlling mechanism for driving radiative extinction and transitioning to CF burning. Radiative extinction diameters exhibited a linear relationship with Do which agreed very well with simulations. Mixture radiative extinction diameters were also consistent with literature values for n-decane, n-heptane, and iso-octane. Simulated droplet and flame diameters, burning rates, and flame radiances were also in good agreement with experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.