Abstract

One of the scientific instruments aboard the NOAA-20 satellite is the Visible Infrared Imaging Radiometer Suite (VIIRS). The VIIRS regularly performs on-orbit radiometric calibration of its reflective solar bands, primarily through observations of an onboard sunlit solar diffuser (SD). The incident sunlight passes through an attenuation screen (the SD screen) and scatters off the SD to provide a radiance source for the calibration. The on-orbit change of the SD bidirectional reflectance distribution function (BRDF), denoted as the H-factor, is determined by an onboard solar diffuser stability monitor (SDSM). The eight SDSM detectors observe the sun through another attenuation screen (the SDSM screen) and the sunlit SD almost at the same time to measures the SD BRDF change. The products of the SD screen transmittance and the BRDF at t=0 and the SDSM screen transmittance were measured prelaunch. Large undulations in the H-factor were seen when using the prelaunch screen transmittances. Fifteen on-orbit yaw maneuvers were performed to validate and to further characterize the screens. Although significantly improved, the H-factor from the yaw maneuver data determined screen transmittance still has undulations as large as about 0.7-0.8%, revealing that the angular step size of the yaw maneuvers is too large. In this paper, we add regular on-orbit data to the yaw maneuver data to further improve the relative products and the relative SDSM screen transmittance. The H-factor time series derived from the newly determined screen transmittance is much smoother than that derived from using only the yaw maneuver data and thus improves considerably the radiometric calibration accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call