Abstract
Sequential model-based optimization (SMBO) approaches are algorithms for solving problems that require computationally or otherwise expensive function evaluations. The key design principle of SMBO is a substitution of the true objective function by a surrogate, which is used to propose the point(s) to be evaluated next. SMBO algorithms are intrinsically modular, leaving the user with many important design choices. Significant research efforts go into understanding which settings perform best for which type of problems. Most works, however, focus on the choice of the model, the acquisition function, and the strategy used to optimize the latter. The choice of the initial sampling strategy, however, receives much less attention. Not surprisingly, quite diverging recommendations can be found in the literature. We analyze in this work how the size and the distribution of the initial sample influences the overall quality of the efficient global optimization~(EGO) algorithm, a well-known SMBO approach. While, overall, small initial budgets using Halton sampling seem preferable, we also observe that the performance landscape is rather unstructured. We furthermore identify several situations in which EGO performs unfavorably against random sampling. Both observations indicate that an adaptive SMBO design could be beneficial, making SMBO an interesting test-bed for automated algorithm design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.