Abstract
We construct initial data corresponding to a single perturbed Kerr black hole in vacuum. These data are defined on specific hyperboloidal (ACMC) slices, on which the mean extrinsic curvature K asymptotically approaches a constant at future null infinity . More precisely, we require that K obeys the Taylor expansion , where is a constant and σ describes a compactified spatial coordinate such that is represented by . We excise the singular interior of the black hole and assume a marginally outer trapped surface as the inner boundary of the computational domain. The momentum and Hamiltonian constraints are solved by means of pseudo-spectral methods and we find exponential rates of convergence of our numerical solutions. Some of the physical properties of the initial data are studied with the calculation of the Bondi mass, together with a multipole decomposition of the horizon. We probe the standard picture of gravitational collapse by assessing a family of Penrose-like inequalities and discuss in particular their rigidity aspects. Dynamical evolutions are planned in a future project.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.