Abstract
This study investigates the initial stage of the thermo-mechanical crystallization behavior for uni- and biaxially stretched polyethylene. The models are based on a mesoscale molecular dynamics approach. We take constraints that occur in real-life polymer processing into account, especially with respect to the blowing stage of the extrusion blow-molding process. For this purpose, we deform our systems using a wide range of stretching levels before they are quenched. We discuss the effects of the stretching procedures on the micro-mechanical state of the systems, characterized by entanglement behavior and nematic ordering of chain segments. For the cooling stage, we use two different approaches which allow for free or hindered shrinkage, respectively. During cooling, crystallization kinetics are monitored: We precisely evaluate how the interplay of chain length, temperature, local entanglements and orientation of chain segments influence crystallization behavior. Our models reveal that the main stretching direction dominates microscopic states of the different systems. We are able to show that crystallization mainly depends on the (dis-)entanglement behavior. Nematic ordering plays a secondary role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.