Abstract

A reliable calibration procedure of a standard six degree-of-freedom inertial measurement unit (IMU) is presented. Mathematical models are derived for the three accelerometers and three rate gyros, taking into account the sensor axis misalignments, accelerometer offsets, electrical gains, and biases inherent in the manufacture of an IMU. The inertial sensors are calibrated using data from a 3D optical tracking system that measures the position coordinates of markers attached to the IMU. Inertial sensor signals and optical tracking data are obtained by manually moving the IMU. Using vector methods, the quaternion corresponding to the IMU platform orientation is obtained, along with its acceleration, velocity, and position. Given this kinematics information, the sensor models are used in a nonlinear least squares algorithm to solve for the unknown calibration parameters. The calibration procedure is verified through extensive experimentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call