Abstract
This paper concerns the Dirichlet initial-boundary value problem for stochastic transport equations with non-regular coefficients. First, the existence and uniqueness of the strong stochastic traces is proved. The existence of weak solutions relies on the strong stochastic traces, and also on the passage from the Stratonovich into Ito’s formulation for bounded domains. Moreover, the uniqueness is established without the divergence of the drift vector field bounded from below.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastics and Partial Differential Equations: Analysis and Computations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.