Abstract

The successful launch of five new-generation experimental satellites of the China’s BeiDou Navigation Satellite System, namely BeiDou I1-S, I2-S, M1-S, M2-S, and M3-S, marks a significant step in expanding BeiDou into a navigation system with global coverage. In addition to B1I (1561.098 MHz) and B3I (1269.520 MHz) signals, the new-generation BeiDou-3 experimental satellites are also capable of transmitting several new navigation signals in space, namely B1C at 1575.42 MHz, B2a at 1176.45 MHz, and B2b at 1207.14 MHz. For the first time, we present an initial characterization and performance assessment for these new-generation BeiDou-3 satellites and their signals. The L1/L2/L5 signals from GPS Block IIF satellites, E1/E5a/E5b signals from Galileo satellites, and B1I/B2I/B3I signals from BeiDou-2 satellites are also evaluated for comparison. The characteristics of the B1C, B1I, B2a, B2b, and B3I signals are evaluated in terms of observed carrier-to-noise density ratio, pseudorange multipath and noise, triple-frequency carrier-phase ionosphere-free and geometry-free combination, and double-differenced carrier-phase and code residuals. The results demonstrate that the observational quality of the new-generation BeiDou-3 signals is comparable to that of GPS L1/L2/L5 and Galileo E1/E5a/E5b signals. However, the analysis of code multipath shows that the elevation-dependent code biases, which have been previously identified to exist in the code observations of the BeiDou-2 satellites, seem to be not obvious for all the available signals of the new-generation BeiDou-3 satellites. This will significantly benefit precise applications that resolve wide-lane ambiguity based on Hatch–Melbourne–Wubbena linear combinations and other applications such as single-frequency precise point positioning (PPP) based on the ionosphere-free code–carrier combinations. Furthermore, with regard to the triple-frequency carrier-phase ionosphere-free and geometry-free combination, it is found that different from the BeiDou-2 and GPS Block IIF satellites, no apparent bias variations could be observed in all the new-generation BeiDou-3 experimental satellites, which shows a good consistency of the new-generation BeiDou-3 signals. The absence of such triple-frequency biases simplifies the potential processing of multi-frequency PPP using observations from the new-generation BeiDou-3 satellites. Finally, the precise relative positioning results indicate that the additional observations from the new-generation BeiDou-3 satellites can improve ambiguity resolution performance with respect to BeiDou-2 only positioning, which indicates that observations from the new-generation BeiDou-3 satellites can contribute to precise relative positioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call