Abstract
Machine learning (ML) has become a valuable tool in particle accelerator control, with growing potential for beam parameter correction. In this study, we present preliminary ML applications at HLS-II, using Lasso regression for online tune correction and a neural network (NN) for beta function simulation correction. Both models were trained with supervised learning on measured beam parameter data, while an improved genetic algorithm optimized the NN structure. Our results show that the ML-based approach achieves competitive correction quality with fewer steps, making it a promising method for future particle accelerator applications and other fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.