Abstract

In this article, we investigate the initial and boundary blow-up problem for the \(p\)-Laplacian parabolic equation \(u_t-\Delta _p u=-b(x,t)f(u)\) over a smooth bounded domain \(\Omega \) of \(\mathbb {R}^N\) with \(N\ge 2\), where \(\Delta _pu=\mathrm{div}(|\nabla u|^{p-2}\nabla u)\) with \(p>1\), and \(f(u)\) is a function of regular variation at infinity. We study the existence and uniqueness of positive solutions, and their asymptotic behaviors near the parabolic boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call