Abstract

We prove that the iterative construction of initial algebras converges for endofunctors F of many-sorted sets whenever F has an initial algebra. In the case of one-sorted sets, the convergence takes n steps where n is either an infinite regular cardinal or is at most 3. Dually, the existence of a many-sorted terminal coalgebra implies that the iterative construction of a terminal coalgebra converges. Moreover, every endofunctor with a fixed-point pair larger than the number of sorts is proved to have a terminal coalgebra. As demonstrated by James Worell, the number of steps here need not be a cardinal even in the case of a single sort: it is ω + ω for the finite power-set functor. The above results do not hold for related categories, such as graphs: we present non-constructive initial algebras and terminal coalgebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.