Abstract
Self-assembled diphenylalanine (FF) nanostructures have recently been demonstrated to be interesting materials for antibacterial and anticancer applications. These applications, among others, seek to take advantage of the high-order and resulting appealing physical properties of FF nanostructures by modifying the peptide in some way to achieve specific functionality. To rationally design modifications to the dipeptide that allow for this behavior, the driving forces of FF self-assembly must be understood. Molecular simulations have been utilized to assess these properties but have yielded conflicting conclusions due to inconsistencies in models chosen as well as the lack of quantitative analyses on the specific driving forces. Here, we present an all-atom explicit solvent molecular dynamics-based study on different length scales of FF aggregation. We utilize a free energy decomposition analysis as well as a dimer cluster analysis to identify the initial aggregation driving force to be FF intermolecular electrostatics, whereas solvent-mediated forces drive crystal growth. These data are consistent with the hypothesis that all hydrophobic dipeptides will have a similar initial aggregation mechanism until a critical aggregate size is reached, at which point crystallization occurs and subsequent crystal growth is dominated by solvent-mediated forces. We demonstrate that this proposed mechanism is testable by infrared spectroscopy focusing on the blueshift of the amide I peak as well as the ordering of the carboxylate peak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.