Abstract

Abstract Several gas fields in South East Asia share some common traits among them, obviously on their geological features but also on their complex field operation. With a large number of small gas accumulations spreading across a large area with high degree of lateral compartmentalization, production from these fields are usually accomplished by hundreds of wells through multi-branches field networks. The scope of this paper is to present the challenging journey of the company's in-house innovative methodology which resulted in the development of a robust software to address the above challenges. The main objective of the software is to optimize field production under numerous constraints present in these fields. With the target to optimize field production and enhance predictive capability, the company integrates the experiences from operating several fields and proposes an innovative approach to tackle these field management challenges. The resultant software optimizes and solves the network calculation by simplifying and formulating the production network into a system of linear equations, then applying optimization techniques as large-scale simplex and mixed-integer linear programming algorithms, to search for the best production scheme while taking user-selected objective function into consideration. The workflow was developed using MATLAB optimization toolbox to work in conjunction with a familiar Excel-formatted input. Moreover, with the incorporation of the Decline Curve Analysis (DCA), it is also applicable for generating long term production forecast. The tool was further combined with Production Data Management System (PDMS) to provide a more efficient automated workflow. It was used to maximize condensate production in Arthit field, where the main constraints are to capture the production loss from CO2 removal unit and to limit mercury concentration in sales condensate. While, in Zawtika field, the application exploits quadratic programing to minimize the sum of gas production rate square hence controlling wells to produce at optimal rate, mitigating sand production problem. In this paper, successful implementation examples and benefits gained will be discussed. It ensures that the condensate production in Arthit field is kept at optimal level compared with about 91% efficiency when subjected to conventional practices while, in Zawtika, applying the workflow and operation resulted in dramatically lower sand production problem. For future forecast, a look-back study was performed to make sure that the method of calculating future potential is accurate. Not only does this new tool provided a more efficient way for the teams to manage their assets but, more importantly, it also helps to save costs by reducing man-hours through its rapid computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.