Abstract

We calculate the systematic errors in the weak gravitational lensing power spectrum which would be caused by spatially varying calibration (i.e. multiplicative) errors, such as might arise from uncorrected seeing or extinction variations. The systematic error is fully described by the angular two-point correlation function of the systematic in the case of the 2D lensing that we consider here. We investigate three specific cases: Gaussian, 'patchy', and exponential correlation functions. In order to keep systematic errors below statistical errors in future LSST-like surveys, the spatial variation of calibration should not exceed 3% rms. This conclusion is independently true for all forms of correlation function we consider. The relative size of the E- and B-mode power spectrum errors does, however, depend upon the form of the correlation function, indicating that one cannot repair the E-mode power spectrum systematics by means of the B-mode measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.