Abstract

The Nikolskii transform makes it possible to construct inhomogeneous solutions of the Boltzmann equation from homogeneous ones. These solutions correspond to a gas in expansion, but if we introduce external forces, they can relax toward absolute Maxwellians. This property holds independently of the assumed intermolecular inverse power force. Consequently, for Maxwell molecules and from energy-dependent homogeneous distributions, we construct effectively a class of inhomogeneous similarity distributions with Maxwellian equilibrium relaxation. We review and investigate again the homogeneous distributions which can be written in closed form, for instance, we show that an elliptic exact solution proposed some years ago violates positivity. For Maxwell interaction with singular cross sections, we numerically construct inhomogeneous distributions having Maxwellian equilibrium states and study the Tjon overshoot effect. We show that both the sign and the time decrease of the external force as well as the microscopic model of the cross section contribute to the asymptotic behavior of the distribution. These inhomogeneous similarity solutions include a class of distributions that asymptotically oscillate between different Maxwellians. Two classes of external forces are considered: linear spatial-dependent forces or linear velocity-dependent forces plus source term.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call