Abstract
To achieve high performance Ge nMOSFETs it is necessary to reduce the metal/semiconductor Schottky barrier heights at the source and drain. Ni/Ge and NiGe/Ge Schottky barriers are fabricated by electrodeposition using n-type Ge substrates. Current ( I)–voltage ( V) and capacitance ( C)–voltage ( V) and low temperature I– V measurements are presented. A high-quality Schottky barrier with extremely low reverse leakage current is revealed. The results are shown to fit an inhomogeneous barrier model for thermionic emission over a Schottky barrier. A mean value of 0.57 eV and a standard deviation of 52 meV is obtained for the Schottky barrier height at room temperature. A likely explanation for the distribution of the Schottky barrier height is the spatial variation of the metal induced gap states at the Ge surface due to a variation in interfacial oxide thickness, which de-pins the Fermi level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.