Abstract

The large open circuit voltage (VOC) loss and phase segregation are two main obstacles hindering the development of wide-bandgap perovskite solar cells (PSCs). Even though substantial progress has been made through crystallization regulation and surface modification on perovskite, the mechanism of VOC loss and phase segregation has rarely been studied. In this paper, we first investigate the halide ions distribution along the out-of-plane direction and find the initial inhomogeneous distribution of halide ions during the crystallization process is an important reason. It leads to the formation of an unfavorable potential well in PSCs, resulting in VOC loss as well as generation of strong strain exacerbating phase segregation. Through introducing melatonin (MT) into perovskite precursors, a homogeneous distribution of halide anions is realized due to the well-regulated crystallization. Consequently, the treated PSCs exhibit an optimized power conversion efficiency (PCE) of 22.88% with a VOC loss as low as 0.38 V, which are the best values for wide-bandgap PSCs up to now.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.