Abstract

The paper studies asymptotics of inhomogeneous integral functionals of an ergodic diffusion process under the effect of discretization. Convergence to the corresponding functionals of the invariant distribution is shown for suitably chosen discretization steps, and the fluctuations are analyzed through central limit theorem and moderate deviation principle. The results will be particularly useful for understanding accuracy of an Euler discretization based numerical scheme for approximating functionals of invariant distribution of an ergodic diffusion. This is an infinite-time horizon problem, and the accuracy of numerical schemes in this context are comparatively much less studied than the ones used for generating approximate trajectories of diffusions over finite time intervals. The potential applications of these results also extend to other areas including mathematical physics, parameter inference of ergodic diffusions and analysis of multiscale dynamical systems with averaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.