Abstract

The present study provides a theoretical framework for the inhomogeneous deformation in metallic glasses. The free volume concentration is adopted as the order parameter, which is a function of position and time. The three processes that can change the local free volume concentration are diffusion, annihilation, and stress-driven creation. The rate functions for free volume generation and plastic flow depend on the underlying microscopic model, but the framework is generally valid for different models. A simple shear problem is solved as an example. A linear stability analysis is performed on the basis of the homogeneous solution. An inhomogeneous solution is obtained with a finite amplitude disturbance to the initial free volume distribution. Numerical simulation shows the development of the inhomogeneous deformation and strain localization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.