Abstract
Effects of low clock rolling passes on through-thickness deformation and recrystallization behavior of the Ta sheet have been investigated. The clock-rolled samples with one cycle (8 passes) were systematically examined under different thickness layers. X-ray diffraction (XRD) and X-ray diffraction line profile analysis (XLPA) showed that the extremely inhomogeneous texture evolution generated and the bulk stored energy existed in the through-thickness clock-rolled Ta sheet after 8 passes. The electron backscatter diffraction (EBSD) results revealed the misorientation of the grains in the deformed samples, indicating that grain subdivision in the surface and center layer was more serious than that in the quarter layer. High intensities misorientation indicates the presence of microshear bands in the surface and center layer. During annealing, the difference of the stored energy and the fragmentation of deformation microstructure along the thickness led to a heterogeneous driving force for the nucleation of the grains, resulting in subsequent different recrystallization rate in the different regions of the sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Natural Science: Materials International
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.