Abstract

Asymmetric exclusion processes for particles moving on parallel channels with inhomogeneous coupling are investigated theoretically. Particles interact with hard-core exclusion and move in the same direction on both lattices, while transitions between the channels is allowed at one specific location in the bulk of the system. An approximate theoretical approach that describes the dynamics in the vertical link and horizontal lattice segments exactly but neglects the correlation between the horizontal and vertical transport is developed. It allows us to calculate stationary phase diagrams, particle currents and densities for symmetric and asymmetric transitions between the channels. It is shown that in the case of the symmetric coupling there are three stationary phases, similarly to the case of single-channel totally asymmetric exclusion processes with local inhomogeneity. However, the asymmetric coupling between the lattices lead to a very complex phase diagram with ten stationary-state regimes. Extensive Monte Carlo computer simulations generally support theoretical predictions, although simulated stationary-state properties slightly deviate from calculated in the mean-field approximation, suggesting the importance of correlations in the system. Dynamic properties and phase diagrams are discussed by analyzing constraints on the particle currents across the channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.