Abstract

In this paper, the properties of a special class of inhomogeneous cosmological models and the interaction of the inhomogeneities with the evolution of the background geometry and matter are studied. The cosmological model is chosen so that the initial inhomogeneities evolve into 'plane' gravitational waves propagating through a smooth Bianchi I dust background. It is shown how the inhomogeneities interact with matter, 3 K radiation, and the background geometry, causing the expansion to slow down in some regions and speed up in others. It is also shown how the gravitational waves can produce a 'dragging of the inertial frame' which will affect the observed distribution of matter and 3 K radiation. In particular, this frame-dragging effect can account for a major fraction of the obsserved dipole component between the 3 K background radiation and the rest frame of global matter, an effect usually assumed to have been produced by large-scale local motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.