Abstract
The d-orbital contribution from the transition metal centers of phthalocyanine brings difficulties to understand the role of the organic ligands and their molecular frontier orbitals when it adsorbs on oxide surfaces. Here we use zinc phthalocyanine (ZnPc)/TiO(2)(110) as a model system where the zinc d-orbitals are located deep below the organic orbitals leaving room for a detailed study of the interaction between the organic ligand and the substrate. A charge depletion from the highest occupied molecular orbital is observed, and a consequent shift of N1s and C1s to higher binding energy in photoelectron spectroscopy (PES). A detailed comparison of peak shifts in PES and near-edge X-ray absorption fine structure spectroscopy illustrates a slightly uneven charge distribution within the molecular plane and an inhomogeneous charge transfer screening between the center and periphery of the organic ligand: faster in the periphery and slower at the center, which is different from other metal phthalocyanine, e.g., FePc/TiO(2). Our results indicate that the metal center can substantially influence the electronic properties of the organic ligand at the interface by introducing an additional charge transfer channel to the inner molecular part.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.