Abstract

The insulator-metal transition (IMT) of vanadium dioxide (VO2) has remained a long-standing challenge in correlated electron physics since its discovery five decades ago. Most interpretations of experimental observations have implicitly assumed a homogeneous material response. Here we reveal inhomogeneous behaviour of even individual VO2 microcrystals using pump-probe microscopy and nanoimaging. The timescales of the ultrafast IMT vary from 40±8 fs, that is, shorter than a suggested phonon bottleneck, to 200±20 fs, uncorrelated with crystal size, transition temperature and initial insulating structural phase, with average value similar to results from polycrystalline thin-film studies. In combination with the observed sensitive variations in the thermal nanodomain IMT behaviour, this suggests that the IMT is highly susceptible to local changes in, for example, doping, defects and strain. Our results suggest an electronic mechanism dominating the photoinduced IMT, but also highlight the difficulty to deduce microscopic mechanisms when the true intrinsic material response is yet unclear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.