Abstract

Temperature distribution and inhomogeneity of its through thickness of the strip play an essential role in hot rolling processes, where both the strip and work-roll behaviour are affected strongly by these temperature fields and the microstructural and mechanical properties through thickness of hot rolled strip depend on this temperature inhomogeneity within the strip being deformed during hot rolling. In this investigation, a mathematical model was developed to predict the thermal history and inhomogeneity of temperature through thickness of an aluminium alloy strip undergoing single-stand hot plate rolling using the commercial finite element (FE) package, ABAQUS/Explicit in three dimensions. To estimate the reliability of the numerical analysis, the FE model was validated using experimental roll force and torque data and also temperature history at the centre-line of strip; good agreement was found between the two sets of predicated and experimental results. The effects of various process parameters, such as rolling speed, interface heat-transfer and friction coefficients between strip and work roll, initial thickness of the strip, and work-roll temperature and diameter on the temperature inhomogeneity, is considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call