Abstract

The photophysics of conjugated polymers has generally been explained based on the interactions between the component conjugated chromophores in a tangled chain. However, conjugated chromophores are entities with static and dynamic structural disorder, which directly affects the conjugated polymer photophysics. Here we demonstrate the impact of chain structure torsional disorder on the spectral characteristics for a macrocyclic oligothiophene 1, which is obscured in conventional linear conjugated chromophores by diverse structural disorders such as those in chromophore size and shape. We used simultaneous multiple fluorescence parameter measurement for a single molecule and quantum-mechanical calculations to show that within the fixed conjugation length across the entire ring an inhomogeneity from torsional disorder in the structure of 1 plays a crucial role in causing its energetic disorder, which affords the spectral broadening of ∼220 meV. The torsional disorder in 1 fluctuated on the time scale of hundreds of milliseconds, typically accompanied by spectral drifts on the order of ∼10 meV. The fluctuations could generate torsional defects and change the electronic structure of 1 associated with the ring symmetry. These findings disclose the fundamental nature of conjugated chromophore that is the most elementary spectroscopic unit in conjugated polymers and suggest the importance of engineering structural disorder to optimize polymer-based device photophysics. Additionally, we combined defocused wide-field fluorescence microscopy and linear dichroism obtained from the simultaneous measurements to show that 1 emits polarized light with a changing polarization direction based on the torsional disorder fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.