Abstract

Factors both intrinsic and extrinsic to the lung may cause inhomogeneity of alveolar pressures during deflation. Wilson et al. (J. Appl. Physiol. 59: 1924-1928, 1985) predicted that any such inhomogeneity would be limited by interdependence of regional expiratory flows. To test this hypothesis and to explore how the pleural pressure gradient might affect inhomogeneity of alveolar pressures, we deflated at submaximal flows excised canine lobes that first were suspended in air and then were immersed in foams that simulated the vertical gradient of pleural pressure. Interregional inhomogeneity of regional transpulmonary pressures was measured with use of an alveolar capsule technique. Flow-dependent inhomogeneity of alveolar pressures was present, with differences in alveolar pressure quickly relaxing to a constant limiting value at each flow. Foam immersion increased inhomogeneity at a given flow. We conclude that factors intrinsic to the lung cause significant inhomogeneity of alveolar pressures at submaximal expiratory flows and that this inhomogeneity is enhanced by the extrinsic gradient of pleural pressure. These observations are consistent with the interdependence of flow proposed by Wilson et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.