Abstract

Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided.

Highlights

  • The function of cell surface proteins and lipids is tightly coupled to their spatial organization [1,2,3]

  • Plasma membrane organization is fundamental to cellular signaling, transport of molecules, and cell adhesion

  • One approach to assess the distribution of plasma membrane molecules is to consider these as bi-dimensional point processes that can be analyzed by spatial statistics

Read more

Summary

Introduction

The function of cell surface proteins and lipids is tightly coupled to their spatial organization [1,2,3]. Membrane constituents cluster in nano- and micro-domains originating from lipid affinity (e.g., lipid rafts) [4], protein-protein interactions (e.g., tetraspanin domains) [5], and constraints imposed by the cytoskeleton [6]. One approach to assess the distribution of plasma membrane molecules is to consider these as bi-dimensional point processes that can be analyzed by spatial statistics. Point processes can be classified as: (I) Homogeneous or random, characterized by a constant density of points; (II) Inhomogeneous, characterized by a non-constant density of points; (III) Regular, with points dispersed; and (IV) Clustered, where points are grouped [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call