Abstract

Taurine plays role in neural development and physiological functions such as endocrine regulation in the central nervous system (CNS), and it is one of the most abundant free amino acid there. We investigated its potential effect as a neurotransmitter in the group of neuroendocrine Dahlgren cells at flounder Paralichthys olivaceus caudal neurosecretory system (CNSS). The application of taurine in vitro led to a reduction in electrical activity of Dahlgren cells, followed by a rise in the number of silent cells, at the same time the frequency of all three activity patterns (tonic, phasic, bursting) in Dahlgren cells was reduced. Both strychnine (a glycine receptor antagonist) and bicuculline (a GABAA receptor antagonist) can block the response to taurine separately. Transcriptome sequencing analysis showed the existence of glycine receptor (GlyR) and GABAA receptor (GABAAR) in the flounder CNSS, and the GlyR, GABAAR, and Cl- channel mRNA expression were significantly raised after taurine superfusion according to quantitative RT-PCR results. These data indicate that taurine may mediate Dahlgren cell population of CNSS activity in vivo through GlyR and GABAAR, thereby, regulating stress-response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.