Abstract

Penicillium digitatum is a major postharvest pathogen that threatens the global citrus fruit industry and causes great economic losses annually. In the present study, inhibitory properties of cinnamon bark oil (CBO) against P. digitatum in vitro were investigated. Results indicated that 0.03% CBO could efficiently inhibit the spore germination, germ tube elongation, mycelial growth, colonial expansion and conidial accumulation of P. digitatum. The results of fluorescein diacetate (FDA) and MitoTraker Orange (MTO) staining also proved the suppression effects of CBO against P. digitatum. Meanwhile, CBO could inhibit green mold rots induced by P. digitatum in citrus fruit when the working concentration of CBO exceeded 0.06%. In addition, the expressions of 12 genes critical for the growth and virulence of P. digitatum were also significantly regulated under CBO stress. Through a transcriptomic analysis, a total of 1802 common differentially expressed genes (DEGs) were detected in P. digitatum after 4 h and 8 h of CBO treatment. Most of the DEG products were associated with carbohydrate, amino acid and lipid metabolism. They directly or indirectly led to the disturbance of the membrane and the generation of reactive oxygen species (ROS). Our results may deepen the understanding of antifungal properties of CBO against P. digitatum and provide the theoretical foundation to uncover the antifungal mechanism of CBO at the molecular level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.