Abstract

Cat retinal ganglion cells of the Y (or alpha) type respond to luminance changes opposite those preferred by their receptive-field centers with a transient hyperpolarization. Here, we examine the spatial organization and synaptic basis of this light response by means of whole-cell current-clamp recordings made in vitro. The hyperpolarization was largest when stimulus spots approximated the size of the receptive-field center, and diminished substantially for larger spots. The hyperpolarization was largely abolished by bath application of strychnine, a blocker of glycinergic inhibition. Picrotoxin, an antagonist of ionotropic GABA receptors, greatly reduced the attenuation of the hyperpolarizing response for large spots. The data are consistent with a model in which (1) the hyperpolarization reflects inhibition by glycinergic amacrine cells of bipolar terminals presynaptic to the alpha cells, and perhaps direct inhibition of the alpha cell as well; and (2) the attenuation of the hyperpolarization by large spots reflects surround inhibition of the glycinergic amacrine by GABAergic amacrine cells. This circuitry may moderate nonlinearities in the alpha-cell light response and could account for some excitatory and inhibitory influences on alpha cells known to arise from outside the classical receptive field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call