Abstract

Selective inhibition of cyclooxygenase-2 (COX-2) inhibitors is an important strategy in design of potent anti-inflammatory compounds with significantly reduced side effects. Therefore, QSAR studies of 2-acetoxyphenyl alkyl sulfides were performed using Bioloom, CAChe 6.1, and Dragon 3.0 for the COX-2 and COX-1 inhibition. The analyses have produced good predictive and statistically significant QSAR models. These studies suggest that lipophilicity affects both COX-1 and COX-2 inhibition in different manner and indicator variables like presence of aromatic ring and triple bond play an important role in COX-2 selectivity. Branching in the molecule, higher path length 6 rich in polarizability, and lesser number of carbonyl groups would be favorable for COX-2 inhibition. Fourth highest eigenvalue of burden matrix corresponding to atomic mass would be favorable for COX-2 inhibition and sixth lowest eigenvalue of burden matrix corresponding to Sanderson electronegativities is conducive for COX-1 inhibition. Lower path length 3 rich in atomic mass and lesser degree of unsaturation in the molecule would be favorable for COX-1 inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call